Singlet oxygen reactivity of bilirubin and related tetrapyrroles

D. A. Lightner¹ and Y.-T. Park

Department of Chemistry, University of Nevada, Reno (Nevada 89557, USA), 23 September 1977

Summary. The rates of chemical reactivity (k_R) and physical quenching (k_Q) of singlet oxygen by bilirubin IXa, mesobilirubin IXa, biliverdin IXa dimethyl ester, aetiobilirubin IV γ , biliverdin IXa, biliverdin IXa dimethyl ester, aetiobiliverdin IV γ and an oxodipyrromethene have been determined. The k_R and k_Q values approach the diffusion threshold for the bilirubin-like substrates, but $k_R < k_Q$ by about a factor of 10^3 for the verdins. A reaction mechanism involving superoxide ion is suggested. Bilirubin appears to quench singlet oxygen by an electron-transfer mechanism.

The phototherapy method² for treating physiologic jaundice in newborn infants owes its success, in part, to photodestruction of bilirubin IXa (BR)^{3,4}. BR can undergo photodestruction in vitro under either anaerobic^{3,5} or aerobic³⁻⁷ conditions. Photodestruction with visible light is more rapid under aerobic conditions⁵, and the reaction involves BR-sensitized production of singlet oxygen ($^{1}O_{2}$) followed by rapid reaction with it^{8,9}. Since the light selection in phototherapy is invariably visible or blue light^{10,11}, it becomes important to know the quantitative aspects of BR photoreactivity and its reactivity toward $^{1}O_{2}$, especially since $^{1}O_{2}$ is implicated in photodynamic action^{11,12}. In this work we report on the rate constants for quenching (k_{Q}) and reaction (k_{R}) of $^{1}O_{2}$ with BR and related substances in chloroform and methanol.

Materials and methods. Bilirubin IXa (1) was obtained from MCB and crystallized from chloroform-methanol. It contained less than 3% of the IIIa and XIIIa isomers as determined by T.A. Wooldridge using high pressure liquid chromatography on silica (Zorbax-Sil) with CHCl₃-1% acetic acid. Mesobilirubin IXa (2) was prepared by G. Bisacchi using a catalytic hydrogenation of 1 in methanolic ammonia with 5% Pd(C). Its dimethyl (3) ester was prepared by reaction with diazomethane¹³. Aetiobilirubin IV γ (4) and aetiobiliverdin IV γ (8) were supplied by Prof. K. M. Smith (University of California, Davis), and pure biliverdin

IXa (6) was supplied by Prof. A. F. McDonagh (University of California, San Francisco). Biliverdin IXa dimethyl ester (7) was prepared by D. C. Crandall¹⁴ and oxodipyrromethene (5) was synthesized by G. B. Quistad¹⁵. The methanol and chloroform solvents used were distilled reagent grade from MCB.

Singlet oxygen ($^{1}O_{2}$) was produced by excitation of Rose Bengal (RB) (Matheson) or Rose Bengal-18-crown-6 ether (RBCE) 16 (eqs. 1 and 2) with monochromatic light, 10-nm bandpass, from a Bausch and Lomb Model 33-86-07 monochromator and a 15-W tungsten-halogen source. RB was used to produce $^{1}O_{2}$ in methanol solutions by excitation at 557 nm (λ_{max}) and RBCE was used to produce $^{1}O_{2}$ in chloroform solution by excitation at 560 nm (λ_{max}). These excitation wavelengths are sufficiently far removed from the BR long wavelength λ_{max} (450 nm) that excitation of the dye-sensitizer with 10-nm bandpass light involves no direct excitation of BR.

$${}^{1}RB_{0} \text{ or } {}^{1}RBCE_{0} \xrightarrow{\lambda = 557 \text{ or } 560 \text{ nm}} {}^{3}RB \text{ or } {}^{3}RBCE$$
 (1)

$${}^{3}RB \text{ or } {}^{3}RBCE + {}^{3}O_{2} \longrightarrow {}^{1}O_{2} + {}^{1}RB_{0} \text{ or } {}^{1}RBCE_{0}$$
 (2)

The ${}^{1}O_{2}$ produced in this way may decay (k_{d}) , be physically quenched (k_{Q}) by substrate (S), or chemically react (k_{R})

Physical (k_O) and reactive (k_R) rate constants for substrate singlet oxygen reactivity

Substrate (10 ⁻⁵ M)	$Value \times 10^9 M^{-1} sec^{-1} in CHCl3a$		Value $\times 10^9 \mathrm{M}^{-1} \mathrm{sec}^{-1} \mathrm{in} \mathrm{CH}_3 \mathrm{OH}^{\mathrm{b}}$	
	$(k_Q + k_R)$	$\mathbf{k}_{\mathbf{R}}$	$(k_Q + k_R)$	$\mathbf{k}_{\mathbf{R}}$
1 Bilirubin IXa	2.8	0.38	2.1°	0.289
	2.5 ^d	0.43 ^d		-
	2.5e,f	0.17 ^{e, f}	_	-
	-	0.01g, h	~	-
	-	$0.10^{h,i}$	-	-
2 Mesobilirubin IXa	2.8	0.59	2.5c	0.79c
	-	$0.06^{h,i}$		
3 Bilirubin IXa-dimethyl ester	1.8	0.67	2.3	0.55
	_	$0.01^{h,i}$	3.3 ⁱ	0.55
4 Aetiobilirubin IVγ ^k	3.0	2.3	2.2	0.85j
5 Oxodipyrromethene	4.3	3.0	2.7	1.4
			2.1	1.0
	_	$0.7^{\mathrm{h,i}}$	=	_
6 Biliverdin IXa	1.7	0.0019	8.4	0.0024
	3.3e	≤ 0.003°		-
7 Biliverdin IXa-dimethyl ester	1.4	0.0012	3.3	0.0016
	$0.8^{h,1}$	$0.0006^{h,1}$		_
8 Aetiobiliverdin IVγ ^k	1.8	0.0043	5.5	0.0035

a 18-Crown-6 Rose Bengal sensitizer. b Rose Bengal sensitizer. c With 0.2% (vol.) conc. NH₄OH. d Data of Foote and Ching¹⁷. Data of Stevens and Small²². f CCl₄ solvent. Data of Matheson et al.³¹. h Freon -113 solvent using Nd-YAG laser direct production of ¹O₂ at high ³O₂ pressures. Freent data of I.B.C. Matheson. CH₃OH:CHCl₃ - 9:1 (v/v) solvent. Sample provided by Prof. Kevin M. Smith, University of California at Davis. Data of Matheson and Toledo³².

with S (eqs. 3-5). Singlet oxygen reactivity $(k_Q' + k_R')$ with the dye sensitizer is much slower than k_d , k_Q or $k_R^{12,17}$.

$${}^{1}O_{2} \xrightarrow{k_{d}} {}^{3}O_{2} \tag{3}$$

$$S + {}^{1}O_{2} \xrightarrow{k_{Q}} {}^{3}O_{2} + S \tag{4}$$

$$S + {}^{1}O_{2} \xrightarrow{k_{R}} products$$
 (5)

The steady-state approximation gives, (eq. 6), for the rate of substrate disappearance:

$$-d[S]/dt = K \cdot k_R[S]/\{(k_Q + k_R)[S] + k_d\}$$
 (6)

where K is the rate of ${}^{1}O_{2}$ production and defined as $K = I_{a} \cdot \Phi_{isc} \cdot f^{1}O_{2}$ (with I_{a} = rate of absorption of light by the sensitizer in mol. quanta/sec, Φ_{isc} = sensitizer triplet quantum yield and $f^{1}O_{2}$ = yield of ${}^{1}O_{2}$ from triplet sensitizer = 1.017-19).

For $\Delta[S] \leq [S_0]$, the solution of eq. 6 can be approximated as (eq. 7):

$$\{[S]/I_a\Delta t\}^{-1} = \Phi_{isc}^{-1}\{(k_Q + k_R)/k_R + k_d[S_0]^{-1}/k_R\}$$
(7)

where $\Delta[S]=[S_0]-[S]$ and $[S_0]$ is the initial substrate concentration. The value of I_a is determined by actinometry using Reinecke's salt²⁰, and a plot of $\{\Delta[S]/I_a\Delta t\}^{-1}$ vs $[S_0]^{-1}$ for a fixed time period will give a linear plot. The ratio of the slope to the intercept of such a plot is $k_d/(k_Q+k_R)$, and the reciprocal of the intercept is $\Phi_{isc}k_R/(k_Q+k_R)$. Since the k_d values for 1O_2 are known in methanol $(k_d=1.4\times10^5~{\rm sec}^{-1})$ and chloroform $(k_d=1.67\times10^4~{\rm sec}^{-1})^{18}$, the values of (k_Q+k_R) can be determined. They are summarized in the table for BR and BR-related substrates. In order to separate k_Q and k_R , the values of Φ_{isc} are required. The value of Φ_{isc} for RB in methanol is 0.76^{19} . Since RB is insoluble in chloroform, RBCE was used, and its Φ_{isc} value was determined by measuring the rate of 1,3-diphenylisobenzofuran (DPBF), which is known to be a good ${}^{1}O_2$ acceptor but not a quencher 17 . By plotting $(\Delta[DPBF]/$

 $I_a \Delta t)^{-1}$ vs $[DPBF_0]^{-1}$, the reciprocal of the intercept, $\Phi_{\rm isc} k_R/(k_Q+k_R)$, was found to be 0.36. Since DPBF does not quench 1O_2 , $k_Q=0$ and $\Phi_{\rm isc}=0.36$. By way of comparison, $\Phi_{\rm isc}$ for RBCE in methanol was found to be 0.63 (vs 0.76 for RB in methanol 17).

Results and discussion. The values of k_R and $(k_Q + k_R)$ are presented in the table along with reference values from other work. As noted earlier 17, the values from Nd-YAG laser produced 1O_2 are about an order of magnitude lower in some instances. Several important conclusions may be deduced from the data of the table and related data. 1. BR (1) and all the other substrates 2-8 quench 1O_2 enormously fast, with k_Q approaching the diffusion limit. However, BR is a known 1O_2 sensitizer 8,9 with a recently established low-lying triplet at ~ 37 kcal/mole above the ground state 21 . It thus seems improbable that BR should quench 1O_2 (22 kcal/mole above its ground state) by resonance) energy transfer. Rather, a more probable quenching mechanism would involve an electron transfer reaction (eq. 8) 22 .

$$BR + {}^{1}O_{2} \rightarrow [BR^{+} \cdot O_{2}^{-}] \rightarrow BR + {}^{3}O_{2}$$
 (8)

This type of mechanism is, in principle, available to all substrates 1-8; however, the extent to which it participates will depend on their 1-electron oxidation (half-wave potentials). Biliverdin (BV) and probably 7 and 8, have even lowerlying triplets (\leq 22 kcal/mole) close to that of β -carotene²³ and can presumably quench 1O_2 effectively by the same (resonance) energy-transfer mechanism ($k_Q \approx 10^{10} \, \mathrm{M}^{-1} \, \mathrm{sec}^{-1}$ for β -carotene¹²). The E_T values for 6-8 are probably < 22 kcal/mole since they are not 1O_2 sensitizers; whereas, triplet β -carotene is quenched by 3O_2 to give 1O_2 24. 2. The possibility of 2 different 1O_2 quenching mechanisms: an electron or charge-transfer mechanism principally involved for 1-5 (eq. 8) and an energy-transfer mechanism principally involved for 6-8 offers an explanation for the greater chemical reactivity (k_R) of the former (1-5) as compared to the latter (6-8). Assume that concerted cycloaddition of 1O_2 (1,2- and 1,4-addition) either is not a

significant factor or contributes equally to the k_R's of all of 1-8. Then, the radical ion pairs [BR⁺ O₂⁻] postulated in the quenching mechanism of 1-5 (eq. 8) can account for the observed products either by collapse to give dioxetanes or endoperoxides²⁵ which decompose to products (eq. 9), or by H abstraction en route to BV-like products (eq. 10)^{6,22}. The comparatively slow rate (k_R) of product formation from 6-8 could thus be ascribed to non-involvement of radical ion pairs or to a less favorable partitioning of the radical ion pair in eqs like 9 and 10.

$$[BR^+, O_2^-] \rightarrow dioxetanes/endoperoxides \rightarrow products$$
 (9)

$$[BR^+ O_2^-] \rightarrow [BR-H] O_2H \rightarrow BV + H_2O_2$$
 (10)

Other evidence for electron transfer reactions with ¹O₂ may be found in enamine cleavages which appear to go through an electron-transfer or charge-transfer mechanism involving collapse of an ion-radical pair 26 . 3. The values of k_Q for 1-5 are depressed as the k_R values increase, but $(\hat{k}_Q + k_R)$ is reasonably constant (= 1.8-4.3). The values of k_R and k_Q are fairly invariant for 1-3, and they are solvent independent, with $k_R < k_Q$. Thus, vinyl groups appear to play no special role, and expected conformational changes (on intramolecular H-bonding^{27,28}) due to esterification or protic vs aprotic solvent do not have an appreciable effect on the rates. However, aetiobilirubin (4) and the related BR model (5) both exhibit substantially enhanced k_R values, $k_R \ge k_Q$. The reasons for the k_R , k_Q differences are not clear; however, it seems likely that in the absence of propionic acid (ester) groups, 4 probably assumes a nonintramolecularly H-bonded conformation akin to that of 529. Thus, whereas the ease of formation of an ion-radical pair intermediate (eq. 8) probably differs little for 1-15, assuming the same half-wave potentials, the data suggest that the relative ease of chemical reaction (eqs 9 and 10) vs quenching (eq. 8) is conformation dependent.

It would appear that BR is able to quench or react competitively fast with any ¹O₂ produced in vivo during phototherapy. Since it is almost surely the most reactive local substrate in the environment in which ¹O₂ is produced³⁰, BR can control its own photodestruction.

The authors wish to thank the National Science Foundation (CHE 74-20877) and the National Institute of Child Health (HD 09026) for generous support of this work.

- 2 D. Bergsma and S.H. Blondheim, eds. Bilirubin Metabolism in the Newborn, II. American Elsevier, New York 1976.
- D.A. Lightner, Photochem. Photobiol. 26, 427 (1977).
- A.F. McDonagh, in: Phototherapy in the Newborn: An Overview, p. 51. Ed. G.B. Odell, R. Schaffer and A.P. Simopoulos. Natl Acad. Sci. U.S., Washington, DC, 1974.
- D.A. Lightner and A. Cu, Life Sci. 20, 723 (1977).
- D.A. Lightner, p. 34 in ref. 4.
- R. Bonnett and J.C.M. Stewart, J. chem. Soc. Perkin I 1975,
- A.F. McDonagh, Biochem. biophys. Res. Commun. 44, 1306 (1971).
- R. Bonnett and J.C.M. Stewart, Biochem. J. 130, 895 (1972).
- Final Report of the Committee on Phototherapy in the Newborn, Division of Medical Sciences. Natl Acad. Sci. U.S., Washington, DC, 1974.
- R.E. Behrman, ed. J. Pediatr. 84, 135 (1974).
- C.S. Foote, in: Free Radicals in Biological Systems, p. 85. Ed. W. Pryor. Academic Press, New York 1976.
- 13 C.C. Kuenzle, M.H. Weibel and R.R. Pelloni, Biochem. J. 133, 357 (1973)
- 14 D.A. Lightner and D.C. Crandall, Tetrahedron Lett. 1973, 953.
- 15 D.A. Lightner, G.B. Quistad and C.S. Pak, Synthesis 1976,
- R.M. Boden, Synthesis 1975, 783.
- C.S. Foote and T.-Y. Ching, J. Am. chem. Soc. 97, 6209 17 (1975)
- P.B. Merkel and D.R. Kearns, J. Am. chem. Soc. 94, 7244 (1972)
- K. Gollnick and G.O. Schenk, Pure appl. Chem. 9, 507 19
- (1964). E.E. Wegner and A.W. Adamson, J. Am. chem. Soc. 88, 20 394 (1966)
- E.J. Land, Photochem. Photobiol. 24, 475 (1976).
- B. Stevens and R.D. Small, Jr, Photochem. Photobiol. 23,
- E.J. Land, unpublished results.
- D.R. Kearns, Chem. Rev. 71, 395 (1971).
- 25 D.A. Lightner and Y.-T. Park, Tetrahedron Lett. 1976, 2209.
- C.S. Foote, A.A. Dzakpasu and J.W.-W. Lin, Tetrahedron Lett. 1975, 1247.
- P. Manitto and D. Monti, J. chem. Soc. chem. Commun. 1976, 122, and references therein.
- 28 R. Bonnett, J.E. Davies and M.B. Hursthouse, Nature 262,
- D.L. Cullen, P.S. Black, E.F. Meyer, D.A. Lightner, G.B. Quistad and C.-S. Pak, Tetrahedron 33, 477 (1977)
- D.A. Lightner and R.D. Norris, New Engl. J. Med. 290, 1260 (1974).
- I.B.C. Matheson, N.V. Curry and J. Lee, J. Am. chem. Soc. 96, 3348 (1974).
- I.B.C. Matheson and M.M. Toledo, Photochem. Photobiol. 25, 243 (1977).

7a-Aza-B-homo[7a,7-d]tetrazole analogues of progesterone and testosterone¹

H. Singh, K. K. Bhutani, R. K. Malhotra and D. Paul

Department of Pharmaceutical Sciences, Panjab University, Chandigarh 160014 (India), 16 September 1977

Summary. The tetrazole analogues of progesterone and testosterone, namely, 7a-aza-B-homo-4-pregneno[7a,7-d]tetrazole-3,20-dione (5) and 3-oxo-7a-aza-B-homo-4-androsteno[7a,7-d]tetrazol-17\(\theta\)-yl acetate (8), have been prepared which are worthy of biological testing.

The steroid hormones analogues possessing fused heterocyclic ring system have been found to be of interest. As an extension of our work on steroidal tetrazoles, we have synthesized 7a-aza-B-homo[7a,7-d]tetrazole analogues of progesterone and testosterone.

Treatment of (25R)-7-oxo-5-spirosten-3 β -yl acetate², prepared by tert-butyl chromate oxidation of diosgenin acetate, with hydrazoic acid-boron trifluoride in chloroform³ gave (25R)-7a-aza-B-homo-5-spirosteno[7a,7-d]tetrazol-3 β yl acetate (1): v_{max} (KBr) 1724 (ester C=O); 1667 (C=C);